资源类型

期刊论文 8

年份

2023 4

2022 1

2021 2

2019 1

关键词

乳液 1

分子间力和表面力 1

水处理 1

界面 1

结垢和防污 1

胶体 1

展开 ︾

检索范围:

排序: 展示方式:

magneto-hybrid polyoxometalate composite membrane with simultaneous photocatalytic self-cleaning and antifouling

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1450-1459 doi: 10.1007/s11705-023-2310-3

摘要: Membrane technology is ideal for removing aqueous humic acid, but humic acid deposits cause membrane fouling, a significant challenge that limits its application. Herein, this work proposed an alternative approach to the controllably magnetically induced magneto-hybrid polyoxometalate (magneto-HPOM) nanocomposite migration toward the polyethersulfone (PES) membrane surface under a magnetic field to enhance the self-cleaning and antifouling functionalities of the membrane. Before incorporating magneto-HPOM nanocomposite into the PES casting solution, functionalized magnetite nanoparticles (F-MNP) were first coated with HPOM photocatalyst to fabricate a magneto-HPOM-PES membrane. It was shown that the apparent impacts of this novel magneto-HPOM-PES membrane on the hydrophilic behavior and photocatalytic properties of the magneto-HPOM nanocomposite improve the hydrophilicity, separation performance, antifouling and self-cleaning properties of the membrane compared with neat PES membrane. Furthermore, after exposure to ultraviolet light, the magneto-HPOM-PES membrane can be recovered after three cycles with a flux recovery ratio of 107.95%, 100.06%, and 95.56%, which is attributed to the temporal super hydrophilicity effect. Meanwhile, the magneto-HPOM-PES membrane could efficiently maintain 100% humic acid rejection for the first and second cycles and 99.81% for the third cycle. This study revealed a novel approach to fabricating membranes with high antifouling and self-cleaning properties for water treatment.

关键词: magneto-hybrid polyoxometalate nanocomposite     composite membrane     antifouling     self-cleaning     magnetic and photocatalytic responsiveness    

Surface modification techniques of membranes to improve their antifouling characteristics: recent advancements

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1837-1865 doi: 10.1007/s11705-023-2347-3

摘要: Surface modification techniques of membranes to improve their antifouling characteristics: recent advancements and developments

关键词: Surface modification techniques    

G-CNTs/PVDF mixed matrix membranes with improved antifouling properties and filtration performance

Xiaoyan Guo, Chunyu Li, Chenghao Li, Tingting Wei, Lin Tong, Huaiqi Shao, Qixing Zhou, Lan Wang, Yuan Liao

《环境科学与工程前沿(英文)》 2019年 第13卷 第6期 doi: 10.1007/s11783-019-1165-9

摘要:

A novel nanocomposite OMWCNT-A-GO was synthesized by conjugating OMWCNT and GO.

The P-OMWCNT-A-GO membrane was fabricated by non-solvent induced phase inversion.

The P-OMWCNT-A-GO exhibits the best water flux, BSA rejection and flux recovery.

It should be due to the enhanced membrane pore size, porosity and hydrophilicity.

关键词: carbon nanotubes     graphene oxide     mixed matrix membrane     nanohybrid     antifouling membrane     membrane hydrophilicity    

An antifouling catechol/chitosan-modified polyvinylidene fluoride membrane for sustainable oil-in-water

Shanshan Zhao, Zhu Tao, Liwei Chen, Muqiao Han, Bin Zhao, Xuelin Tian, Liang Wang, Fangang Meng

《环境科学与工程前沿(英文)》 2021年 第15卷 第4期 doi: 10.1007/s11783-020-1355-5

摘要: Abstract • Underwater superoleophobic membrane was fabricated by deposition of catechol/chitosan. • The membrane had ultrahigh pure water flux and was stable under harsh pH conditions. • The membrane exhibited remarkable antifouling property in O/W emulsion separation. • The hydration layer on the membrane surface prevented oil droplets adhesion. Low-pressure membrane filtrations are considered as effective technologies for sustainable oil/water separation. However, conventional membranes usually suffer from severe pore clogging and surface fouling, and thus, novel membranes with superior wettability and antifouling features are urgently required. Herein, we report a facile green approach for the development of an underwater superoleophobic microfiltration membrane via one-step oxidant-induced ultrafast co-deposition of naturally available catechol/chitosan on a porous polyvinylidene fluoride (PVDF) substrate. Membrane morphology and surface chemistry were studied using a series of characterization techniques. The as-prepared membrane retained the original pore structure due to the ultrathin and uniform catechol/chitosan coating. It exhibited ultrahigh pure water permeability and robust chemical stability under harsh pH conditions. Moreover, the catechol/chitosan hydrophilic coating on the membrane surface acting as an energetic barrier for oil droplets could minimize oil adhesion on the surface, which endowed the membrane with remarkable antifouling property and reusability in a cyclic oil-in-water (O/W) emulsion separation. The modified membrane exhibited a competitive flux of ~428 L/(m2·h·bar) after three filtration cycles, which was 70% higher than that of the pristine PVDF membrane. These results suggest that the novel underwater superoleophobic membrane can potentially be used for sustainable O/W emulsions separation, and the proposed green facile modification approach can also be applied to other water-remediation materials considering its low cost and simplicity.

关键词: Antifouling     Catechol/chitosan co-deposition     Oil-in-water emulsions separation     Underwater superoleophobic    

Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation

Shuo Wei, Lei Du, Shuo Chen, Hongtao Yu, Xie Quan

《环境科学与工程前沿(英文)》 2021年 第15卷 第1期 doi: 10.1007/s11783-020-1303-4

摘要: Abstract • A stable and electroconductive CNTs/ceramic membrane was fabricated. • The membrane with the electro-assistance exhibited optimal fouling mitigation. • The removal efficiency was improved by the -2.0 V electro-assistance. • Electro-assisted filtration is energy-saving than that of commercial membrane. Ultrafiltration is employed as an important process for water treatment and reuse, which is of great significance to alleviate the shortage of water resources. However, it suffers from severe membrane fouling and the trade-off between selectivity and permeability. In this work, a CNTs/ceramic flat sheet ultrafiltration membrane coupled with electro-assistance was developed for improving the antifouling and separation performance. The CNTs/ceramic flat sheet membrane was fabricated by coating cross-linked CNTs on ceramic membrane, featuring a good electroconductivity of 764.75 S/m. In the filtration of natural water, the permeate flux of the membrane with the cell voltage of -2.0 V was 1.8 times higher than that of the membrane without electro-assistance and 5.7-fold greater than that of the PVDF commercial membrane. Benefiting from the electro-assistance, the removal efficiency of the typical antibiotics was improved by 50%. Furthermore, the electro-assisted membrane filtration process showed 70% reduction in energy consumption compared with the filtration process of the commercial membrane. This work offers a feasible approach for membrane fouling mitigation and effluent quality improvement and suggests that the electro-assisted CNTs/ceramic membrane filtration process has great potential in the application of water treatment.

关键词: Ultrafiltration     Electro-assistance     CNTs     Membrane fouling mitigation    

effect of poly(ethylene-co-vinyl alcohol) molecular weight and vinyl alcohol content on morphology, antifouling

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1484-1502 doi: 10.1007/s11705-023-2331-y

摘要: Various hydrophilic poly(ethylene-co-vinyl alcohol) (EVOH) were used herein to precisely control the structure and hydrodynamic properties of polysulfone (PSF) membranes. Particularly, to prepare pristine PSF and PSF/EVOH blends with increasing vinyl alcohol (VOH: 73%, 68%, 56%), the non-solvent-induced phase separation (NIPS) technique was used. Polyethylene glycol was used as a compatibilizer and as a porogen in N,N-dimethylacetamide. Rheological and ultrasonic separation kinetic measurements were also carried out to develop an ultrafiltration membrane mechanism. The extracted membrane properties and filtration capabilities were systematically compared to the proposed mechanism. Accordingly, the addition of EVOH led to an increase in the rheology of the dopes. The resulting membranes exhibited a microporous structure, while the finger-like structures became more evident with increasing VOH content. The PSF/EVOH behavior was changed from immediate to delayed segregation due to a change in the hydrodynamic kinetics. Interestingly, the PSF/EVOH32 membranes showed high hydrophilicity and achieved a pure water permeability of 264 L·m–2·h–1·bar–1, which was higher than that of pure PSF membranes (171 L·m–2·h–1·bar–1). In addition, PSF/EVOH32 rejected bovine serum albumin at a high rate (> 90%) and achieved a significant restoration of permeability. Finally, from the thermodynamic and hydrodynamic results, valuable insights into the selection of hydrophilic copolymers were provided to tailor the membrane structure while improving both the permeability and antifouling performance.

关键词: polysulfone     blend modification     ultrafiltration membrane     formation hydrodynamics     poly(ethylene-co-vinyl alcohol) copolymer    

Nonpolar cross-stacked super-aligned carbon nanotube membrane for efficient wastewater treatment

《环境科学与工程前沿(英文)》 2023年 第17卷 第3期 doi: 10.1007/s11783-023-1630-3

摘要:

● A novel nonpolar super-aligned carbon nanotube (SACNT) membrane was prepared.

关键词: Membrane fouling     Wastewater     Membrane separation     Antifouling     Aligned carbon nanotube    

石油生产过程中界面力和表面相互作用机制探究 Review

杨笛灵, 彭旭雯, 彭琼瑶, 王涛, 乔辰宇, 赵子谦, 龚露, 刘月亮, 张豪, 曾宏波

《工程(英文)》 2022年 第18卷 第11期   页码 49-61 doi: 10.1016/j.eng.2022.06.012

摘要:

尽管可再生能源的探索在过去十年取得了进展,但原油或石油仍然是世界上最重要的能源资源之一。石油生产涉及许多具有挑战性的问题,如复杂的油水乳状液不稳定、管道和其他设施上的结垢现象,以及水处理。这些问题受到相关过程中涉及的油/水/固/气界面的分子力的影响。本文概述了通过应用表面力仪器(SFA)和原子力显微镜(AFM)等纳米力学测量技术探测几个石油生产过程(如沥青提取、乳液稳定和不稳定、结垢和防污现象以及水处理)中的界面力的最新进展。沥青与周围流体介质中的矿物固体或气泡之间的相互作用力决定了油砂生产中沥青的释放和浮选效率。复杂的油/水乳状液的稳定性受乳状液滴之间,特别是界面活性物种(如沥青质)之间作用力的制约。各种石油成分(如沥青质)和乳状液滴与不同的基质表面(如管道或膜)相互作用,影响结垢现象、油水分离和废水处理。对这些分子间和界面力的量化推进了对这些界面相互作用机理的理解,促进了先进材料和技术的发展,从而解决了相关的挑战性问题并改善了石油生产过程。此外,本文还介绍了该领域尚未解决的挑战和对未来研究方向的建议。

关键词: 分子间力和表面力     界面     乳液     胶体     结垢和防污     水处理    

标题 作者 时间 类型 操作

magneto-hybrid polyoxometalate composite membrane with simultaneous photocatalytic self-cleaning and antifouling

期刊论文

Surface modification techniques of membranes to improve their antifouling characteristics: recent advancements

期刊论文

G-CNTs/PVDF mixed matrix membranes with improved antifouling properties and filtration performance

Xiaoyan Guo, Chunyu Li, Chenghao Li, Tingting Wei, Lin Tong, Huaiqi Shao, Qixing Zhou, Lan Wang, Yuan Liao

期刊论文

An antifouling catechol/chitosan-modified polyvinylidene fluoride membrane for sustainable oil-in-water

Shanshan Zhao, Zhu Tao, Liwei Chen, Muqiao Han, Bin Zhao, Xuelin Tian, Liang Wang, Fangang Meng

期刊论文

Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation

Shuo Wei, Lei Du, Shuo Chen, Hongtao Yu, Xie Quan

期刊论文

effect of poly(ethylene-co-vinyl alcohol) molecular weight and vinyl alcohol content on morphology, antifouling

期刊论文

Nonpolar cross-stacked super-aligned carbon nanotube membrane for efficient wastewater treatment

期刊论文

石油生产过程中界面力和表面相互作用机制探究

杨笛灵, 彭旭雯, 彭琼瑶, 王涛, 乔辰宇, 赵子谦, 龚露, 刘月亮, 张豪, 曾宏波

期刊论文